Lightweight structures with new car technologies

Julian Haspel
Application Development,
LANXESS Business Unit Semi-Crystalline Products

Automotive Days Poland
October 27-28, 2011
LANXESS – A premium supplier of high-tech plastics for demanding technical applications

- Main industries of LANXESS’ high-tech plastics are automotive (>50%) and electro / electronics (>20%)
- LANXESS’ leading high-tech plastic brands: Durethan®, Pocan®
 - Recognized as intelligent system solutions
 - Combining mechanical strength with resistance to heat, oils and abrasion
- New service brand HiAnt®
 - Tailored international customer service and in-depth know-how in product, application, process and technology development
- Main Business Unit: Semi-Crystalline-Products (SCP) belonging to Performance Polymers Segment

LANXESS provides premium high-tech plastics

Sources: JD Powers 08/2010; LANXESS own estimates
LANXESS – A leading development partner for the automotive industry

- More than 20 years of experience in compound technology
- Inventor of the hybrid technology
- Innovative materials and concepts for new application fields in automotive and motorcycle manufacturing
- Well acquainted with various demands by the automotive industry
- Valuable expertise from other industries (e.g. electro)
- Important contribution to future E-mobility, alternative fuels and flame protection

Valuable experience and focus on innovation for the future of mobility
Growing car production and trend of weight reduction drive demand for high-tech plastics

- Global car production with annual growth of ~3.3%
- Increased usage of high-tech plastics per car drives growth of 7% p.a.
- Global production of light vehicles will increase by 30% within 5 years
- Current high-tech plastic share in Western cars 15-17%
- Chinese vehicles only consist of about 7% plastic components → Growth potential
- E-mobility further pushes high-tech plastics → Total share of plastic expected to exceed 25%

Innovations in high-tech plastics enable future mobility

Sources: JD Powers 08/2010; Polymotive; Plastics Europe 2010; LANXESS own estimates; Handelsblatt.com (Oct. 21, 2010), 4
Comparison of different fuel economy standards worldwide

Comparison of actual and projected fuel economy for new passenger vehicles

Increased use of high-tech plastics as basis for automotive innovation

Thermoplastic in automobiles

Thermoplastic in trucks

Innovative materials lead to weight and cost reduction, greater safety and comfort
What is “Plastic/Metal Hybrid” (PMH)?

Metal sheet

Polyamid 6 GR
Production process (1/3) – Deep-drawn metal sheet
Production process (3/3) – Finished product
Deformation under bending load

<table>
<thead>
<tr>
<th>Force F [kN]</th>
<th>Deformation f [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Plastic/metal composite profile**
- **Closed sheet steel profile**
- **Open sheet steel profile**

- 50
- 340
- 340
Cross-section of a plastic/metal hybrid structure
Typical application of Plastic/Metal Hybrid: front ends
Examples of Plastic/Metal Hybrid front ends out of Durethan®

|----------------|----------------|-------------------|-------------------|-----------------------|-------------------|---------------------|---------------------|

More than 70 models in mass-production
Far more than 50 mn parts on the road
Plastic/Metal Hybrid – Part of the body structure
Plastic/Metal Hybrid – Pedal box

- Worldwide first pedal box with PMH
- Material Durethan BKV 30 H2.0
- 10% cost and weight advantages compared to conventional design
- Integration of numerous functions
- Ductile crash behavior

Shift gear

Automatic gear
Continuous fiber reinforced thermoplastic composites (CFT) – Overview

- State-of-the-art technology for aircrafts
- Challenge: cost optimized and ready for mass production alternatives for the automotive industry
- High-tech plastics with glass, carbon, aramid or mixture
- 2D semi-finished product (panel) based on a thermoplastic matrix
- Easy alteration to 3D shape
- Fabrics or uni-directional fabric made of continuous filaments
- Complete impregnation

CFT for demanding mobility solutions
Continuous fiber reinforced thermoplastic composites (CFT) – Advantages and challenges

Advantages
- Low weight – high strength
- Excellent crash performance
- No corrosion and easier recycling
- Integration of functions
- Possibility of complex designs
- Low investment

Challenges
- Influence of temperature and water absorption

High performance systems for greater safety, efficiency and sustainability
Continuous fiber reinforced thermoplastic composites (CFT) – Examples

Door impact beam

Steering column

One shot molding process
Innovative high-tech plastics for the future of mobility

LANXESS Semi-Crystalline Products – High-tech plastics key for future sustainable mobility

Expertise in customer-oriented R&D and cutting edge product properties

Cost and performance optimized solutions ready for mass production

High-tech plastics material leadership and engineering know-how
Safe harbour statement

This presentation contains certain forward-looking statements, including assumptions, opinions and views of the company or cited from third party sources. Various known and unknown risks, uncertainties and other factors could cause the actual results, financial position, development or performance of the company to differ materially from the estimations expressed or implied herein. The company does not guarantee that the assumptions underlying such forward looking statements are free from errors nor do they accept any responsibility for the future accuracy of the opinions expressed in this presentation or the actual occurrence of the forecasted developments.

No representation or warranty (express or implied) is made as to, and no reliance should be placed on, any information, including projections, estimates, targets and opinions, contained herein, and no liability whatsoever is accepted as to any errors, omissions or misstatements contained herein, and, accordingly, none of the company or any of its parent or subsidiary undertakings or any of such person’s officers, directors or employees accepts any liability whatsoever arising directly or indirectly from the use of this document.