Ion Exchange Resins for the Power Industry

QUALITY WORKS.

QUALITY PROTECTS.
LANXESS is one of the world’s major manufacturers of ion exchange resins for almost any application. This brochure intends to give an introduction to the LANXESS portfolio with an emphasis on the use in power stations. More specifically, its focus is on condensate polishing within water-steam circuits. On the basis of decades of experience in research and development coupled with application expertise, LANXESS is a preferred partner for all kinds of ion exchange resin usage in power stations. This is illustrated by several case studies of well-known industry partners and some scenario-type cases, which are presented in this brochure.

Resins from LANXESS are an excellent fit to many water treatment plants and are at the cutting edge of technology. LANXESS developed and implemented monodisperse resins based on polystyrene and divinylbenzene about twenty years ago for use in fluidized bed process filters, and many resin fillings of that first generation are still running very well in industrial applications. LANXESS monodisperse resins boast both excellent chemical and osmotic stabilities. They have uniformity coefficients of a maximum of 1.1, resulting in a small share of fines and very low pressure losses. The resin’s total capacity is well utilized, and the need for rinse water is reduced. Another advantage is the homogeneous throughput of regenerants, water, and solutions, which leads to a homogeneous operating zone. The pressure drop gradient is virtually linear across the entire bed depth, and components can be separated very well in mixed bed applications.

Gel-type resins are employed in most cases, but sometimes it is necessary to have larger quantities of naturally occurring organic material absorbed. This can effectively be achieved by the use of macroporous resins.

INDEX

02 Introduction

- Water-steam circuits in various types of power stations
 04 Fossil fuel power stations
 06 Nuclear power stations

- Employing Lewatit® resins in internal water circuits
 08 General remarks
 09 Advantages of Lewatit® in condensate polishing
 10 Ion exchange resins for non-radioactive water circuits of PWRs
 12 Ion exchange resins for water circuits in radioactive environments
 Chemical & Volume Control System
 14 Application in cooling circuits
 Cleaning up spent fuel pool process water

- Case studies on using Lewatit® in internal water circuits
 16 Enhancing condensate polishing capacity
 18 Effective condensate polishing and TOC reduction
 20 Water treatment in the spent fuel pool make-up system of a nuclear power plant
 22 Efficient removal of ions from reverse osmosis permeate
 24 Use of macroporous resins in a new power plant

- Product overview:
 Selecting the right Lewatit® resin
 26 Overview and treatment of condensates
 28 Treatment of radioactively contaminated water
 30 Photography credits, global presence, disclaimer
Fossil fuel power stations

Fossil fuel power stations, such as the coal-fired one depicted in Fig. 1, convert combustion heat into mechanical and ultimately electrical energy by means of a turbine and an electrical generator, respectively. The prime mover is a steam or a gas turbine, or, in small plants, a reciprocating internal combustion engine. Ion exchange resins are used mainly for demineralising make-up water, for polishing condensates, and sometimes for cleaning wastewater.

The heat generated by burning fossil fuels is transferred to water boilers in which steam is produced. This steam is used to propel the turbines. The water which is fed to the boilers – known as make-up water – has to be fully demineralized before use.

LANXESS offers a full portfolio of Lewatit® ion exchange resins and Lewabrane® reverse osmosis membranes for these applications.

The production of make-up water is not covered in this brochure. Further information about this has been compiled in numerous leaflets published by LANXESS.

Recycled condensate – another major component of boiler feed water – also has to be purified before it is reused. This serves to avoid corrosion of metal parts coming into contact with this water at elevated temperatures and pressures. Demineralization and condensate polishing by ion exchange can easily produce pure water with conductivities of less than 0.1 μS/cm.

FOSSIL PLANT – FOSSIL FUEL BOILER

- **Boiler**
- **Superheater**
- **Economizer**
- **Furnace**
- **HP Turbine**
- **IP Turbine**
- **LP Turbine**
- **Generator**
- **Stator Water Demineralizer**
- **Condenser**
- **Lewatit®**
- **Condenser Booster Pump**
- **Boiler Feed Pump**
- **Storage Tank**
- **Condensate Polishing**
- **Hotwell Pump**

Fig. 1
Nuclear power stations

There are different types of nuclear reactors. In most countries, pressurized or boiling water reactors (PWR, BWR) represent the segment of light water (H\(_2\)O) reactors. In both PWRs and BWRs, ordinary (light) water serves as a moderator fluid and as coolant for the reactor core.

Water treatment in nuclear power plants may considerably differ from that in fossil fuel plants. Ion exchange resins are applied for making up raw water, for all kinds of treating water in the primary and secondary cooling loops, for condensate polishing, and for treating waste water.

In **PRESSURIZED WATER REACTORS** (PWR) (Fig. 2), pressure vessels contain the nuclear fuel, control rods, moderator, and coolant. They are moderated and cooled by liquid water held under high pressure.

The hot radioactive water leaving the pressure vessel is led through a steam generator, which in turn heats a secondary (non-radioactive) circuit of water to produce steam able to run turbines. The majority of current reactors work according to this principle.

BOILING WATER REACTORS (BWR) are cooled and moderated by water like a PWR, but at a lower pressure, which allows the water to boil inside the pressure vessel producing steam that runs the turbines. Hence, only one cooling loop is required (Fig. 3).

Water circuits installed in nuclear power stations often contain traces of radioactive materials. This applies, for example, to the primary circuits of BWRs and PWRs, but even to the secondary circuits in PWRs, and of course to spent fuel pools as well.

SPENT FUEL POOLS are used for storing spent fuel rods from nuclear reactors. They are approx. 12 meters deep. Their base is equipped with storage racks designed to hold fuel assemblies after they have been removed from the reactor. This kind of pool is situated at the reactor site. After three to six years’ use in the reactor, spent fuel rods are often kept underwater for another ten to 20 years before they are either reprocessed or sent to their final storage space in special casks. The water in the spent fuel pools cools the fuel and also provides efficient shielding from radiation.

A **PRESSURIZED HEAVY WATER REACTOR** (PHWR) like the CANDU nuclear power plant developed in Canada uses non-enriched uranium as its fuel and heavy water as a moderator (deuterium oxide, D\(_2\)O). The heavy water is kept under pressure so more heat can be transported out of the reactor core. Though heavy water is expensive, cost is moderate since a PHWR does not require fuel enrichment.

Heavy water is kept in a large tank (calandria), which is penetrated by pressure tubes containing the nuclear fuel. As in a PWR, the primary coolant generates steam in a secondary circuit to drive the turbines. The reactor is very efficient in its demand for uranium and allows for precise flux control in the core.

Ion exchange resins are used in both circuits:
- Low-pressure/low-temperature moderator circuit
- High-pressure/high-temperature primary heat transport circuit (PHT)

The role of mixed bed resins in removing gadolinium nitrate from moderator water is an important requirement in heavy water reactors. Gadolinium salts (Gd3+) are used in the range from 0.05 to 0.20 mg/kg as soluble neutron absorbers in the moderator systems of many PHWRs. A pH in the range of 5–5.5 has to be maintained as Gd3+ is water-soluble only under acidic pH conditions.
Employing Lewatit® resins in internal water circuits

General remarks
Condensate polishers are employed in systems using steam generation to transport thermal energy both in fossil fuel and nuclear power plants. By using a technology similar to that of a high-performance demineralization process, very low quantities of dissolved salts or other contaminants are removed from the circulating water to prevent problems such as scale formation. Otherwise, such scale could precipitate inside pipes or, in the worst case, within devices such as boilers, steam generators, condensers, steam turbines, and cooling towers. Malfunctions including leakages of sodium, high pressure losses, leaching of TOC, etc. may then occur.

The removal of minerals has a secondary beneficial effect of maintaining the pH balance of the water at or near neutral by removing ions that would tend to make the water more acidic. This reduces the rate of corrosion where water comes in contact with metal.

The type of condensate treatment required for boilers depends on various factors:

- Condensate quality, e.g., conductivity, corrosion products, hardness, silica content, hydrocarbons, pollutants, organic chlorides, and sulfates.
- Amount and quality of condensate return in the boiler feed water
- Requirements of the boiler feed water and boiler water, depending, e.g., on boiler type, boiler pressure, maximum heat transfer
- Requirements on the steam produced, e.g., super-heater/turbine operation, high-quality steam for production processes
- Economic and environmental requirements, e.g., blow down rate, effluent requirements

Basically, condensate treatment consists of ion exchange units with or without pre-titation.

Typically, the condensate stream undergoes state-of-the-art polishing by mixed beds to remove all kinds of impurities from the water. The cycle time can be between several weeks and several months before the resins need to be regenerated.

Condensate treatment often includes a deaerator to remove dissolved air from the water, further reducing its corrosiveness. Furthermore, a corrosion inhibitor like hydrazine may be added in ppm concentrations and dosed with pH control agents like ammonia to keep the residual acidity low. Typically, the cooling water causes the steam to condense at a temperature of about 95°F (35°C).

Advantages of Lewatit® in condensate polishing
Lewatit® cation and anion exchange resins, as well as mixed beds, are widely and very successfully used for the polishing of condensates. Most of these resins are monodisperse, hence offering many advantages to the operator:

- High flow rates during regeneration and loading
- High operating capacity at a low consumption of regenerants
- Low rinse water demand
- Homogeneous throughput of regenerants, water, and solutions, resulting in a homogeneous operating zone
- Virtually linear pressure drop gradient across the entire bed depth, allowing operation with higher bed depths
- Lower TOC emission and high resistance to oxidative stress
- Excellent separation of components in mixed bed applications to allow for efficient regeneration and low leakage.

Of vital importance is the removal of undesired components such as crud, corrosion products, remnants of hardness constituents, and silica by ion exchange resins selected for polishing condensates. Of these, retained solid constituents in the condensate have to be removed in regular intervals (blow down).

LANXESS developed new resins both for polishing and ultra pure water applications. One example is the Lewatit® MonoPlus S 215 KR, which is highly cross-linked. This resin has a very low tendency to leach and, at the same time, a rather high total capacity of 2.4 eq/l at least.

HIGH FRIABILITY

Lewatit® monodisperse resins are highly resistant to breakage from applied forces in high-pressure drop applications.
Ion exchange resins for non-radioactive water circuits of PWRs

Nuclear power plants equipped with a PWR have two separate cooling systems that must be monitored to ensure compliance with the guidelines, namely the reactor and the steam circuits. Modern, monodisperse ion exchange resins such as Lewatit® MonoPlus perform in both segments and thus safeguard compliance with the specifications.

In certain condensate polishing applications, LANXESS has had long-standing experience in the use of macroporous resin, e.g., Lewatit® MonoPlus SP 112 KR and Lewatit® MonoPlus MP 800 KR. Depending on the individual operating conditions, macroporous resins have advantages for some customers.

The use of macroporous resins compared to standard gel-type resins offers complementary advantages:

- Lower risk of organic fouling
- High oxidant stability compared to gel-type resins
- Longer life span
- SAC with highest oxidative stability of the matrix to reduce sulfate leakage
- Very effective rinsing behavior due to a lower risk of organic fouling on the anion resin as well as outstanding kinetics and reduced amount of waste
- Low pressure drop due to outstanding monodispersity and absence of fine resin beads (<0.315 mm max. 0.1%)
- SAC with more efficient regeneration in comparison with highly cross-linked gel-type cation exchange resins
- Outstanding separation behavior in mixed bed systems due to their high degree of monodispersity, i.e., a maximum uniformity coefficient of 1.1 and appropriate bead diameters
- Low inherent leaching

Numerous factors govern the decision for a suitable resin or resin combination, including:

- Cycle chemistry and length
- Temperature: condensate return flow temperature
- Regeneration: internal or external, types of regenerants and their qualities
- Filter columns: arrangement and geometry
- Impurities: organics and their concentration, expected silica concentrations
- Water quality in general: during start-up phase
- Corrosion rate

In many cases a decision needs to be made whether macroporous or gel-type ion exchange resins or even a mixture of them (i.e., gel-type cation and macroporous anion) should be used in mixed bed condensate polisher units. Operating capacities of macroporous resins are usually lower than those of gel-type resins. Moreover, gel-type cation exchange resins with enhanced cross-linking ratios have weaker regeneration efficiencies and exchange kinetics.

For this reason, highly cross-linked (13–16%) gel-type cation exchange resins have specific advantages for use in non-regenerable single beds or mixed beds, e.g., in BWR primary circuit condensate polishing.

Compared to those highly cross-linked cation exchange resins, identical or even slightly higher operating capacities are achieved by resins such as Lewatit® MonoPlus S 200 KR. This is due to their monodisperse polymer matrix (uniformity coefficient of max. 1.1), which also provides better kinetics, when the water-steam cycle is conditioned with amines and sulfuric acid is used for regeneration in co-current operation. In external regeneration, the high mechanical stability of Lewatit® MonoPlus S 200 KR is a great advantage.

When amines are used as corrosion inhibitors, the concentration of organic substances in the water-steam cycle rises drastically. In this case, macroporous anion exchange resins, e.g., the Lewatit® MonoPlus MP 800 KR, in mixed bed units are recommended in combination with highly cross-linked (10 to 12%) cation exchange resins such as Lewatit® MonoPlus S 200 KR. This is the better alternative to using a purely gel-type Lewatit® MonoPlus S 200 KR/M 800 KR variant. The latter should be preferred in cases of moderate organic fouling and if higher operating capacities are required, occasionally with higher silica loads.

Mixed bed filters used for the polishing of condensate not only remove common cations from the water, but also ammonia, which is used as a volatile alkalizer. This usually results in a shorter operation time. However, it is possible to extend the operation time beyond the breakthrough of ammonium ions with what is referred to as “ammonium operation.” During this type of operation, it is mandatory that leakage levels for sodium issued for boiler feed water by VGB PowerTech e.V., the international technical association for generation and storage of power and heat, are not exceeded. Furthermore, the measured uptake capacity for sodium has been higher than expected compared to theoretically calculated examples quoted in the literature. The “ammonium operation” is, therefore, an economically attractive mode of running a power plant.

Much higher absorption and desorption capacities of macroporous Lewatit® MonoPlus MP 800 KR, particularly for organic substances of high molecular weight, result in lower organic fouling, especially after longer service cycles. These resins are less susceptible to kinetic impairment when compared to gel-type anionic exchange resins.
Ion exchange resins for water circuits in radioactive environments

Chemical & Volume Control System (CVCS)
CVCSs for reactor waters are used both in light and heavy water reactor designs and consist of mixed beds containing both a cation and an anion exchange resin operating under pressure. To prevent contamination of heat transfer surfaces, and to limit radioactivity in the water and in the anti-corrosion layers, CVCS clean-up removes the following substances from the cooling water:

- Inactive, radioactive, or non-radioactive corrosion products.
- Undesirable positively and negatively charged species
- Fission products

Reactor cooling circuits (primary cooling circuits) of PWR (see Fig. 3, page 7) are operated by the alkaline method. Lithium hydroxide (containing isotopically pure 7Li as neutron moderator) is usually used as the alkalinizing agent. Boric acid is also added to the reactor coolant as a neutron absorber. Due to its reaction with thermal neutrons, more 7Li is formed during operation of the power plant according to the formula:

$10B + 1nth \rightarrow $[^{11}$B] \rightarrow 7Li + α + 2.31 MeV.

Through a specific dosage of lithium hydroxide or the removal of lithium, it is possible to adapt the service conditions in a way that the amount of suspended corrosion product approaches a minimum. This is called the coordinated boron/lithium method.

Fig. 4 explains the use of a CVCS mixed bed arrangement at a nuclear power station. The service water is original reactor cooling water bypassed for treatment in a CVCS service mixed bed column filled with standard gel-type resins. For example, a combination of Lewatit ® MonoPlus S 200 KR and MonoPlus M 800 KRI is very effective in cleaning up reactor water.

Cooling water treatment
- 6 storage tanks (latches)

Li removal filter
- 1–2/week, 2–3 h

Reactor water clean-up
- 8 kg/s (28.8 m³/h) – Reactor operation 50-65°C

Revision filter
- Shutdown/startup – 10–19 kg/s

Table 1: Decontamination factors of downstream CVCS mixed bed filter during shutdown for various radioactive contaminants (activities in Bq/m³)

<table>
<thead>
<tr>
<th>Cross-link rate</th>
<th>Feed</th>
<th>Gel/gel</th>
<th>Macro/Gel</th>
<th>DF</th>
<th>DF</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-800 KR/S-200 KR</td>
<td>12%</td>
<td>Macro/Gel</td>
<td>Feed</td>
<td>Gel/gel</td>
<td>DF</td>
<td>DF</td>
</tr>
<tr>
<td>Fission products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-134</td>
<td><1.2E+05</td>
<td><1.0E+05</td>
<td>1.7E+04</td>
<td>2.4E+04</td>
<td>5.8E+04</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.50E+05</td>
<td><1.2E+04</td>
<td>1.9E+04</td>
<td>7.8E+04</td>
<td>2.6E+04</td>
<td>5.8E+04</td>
</tr>
<tr>
<td>J-131</td>
<td><1.0E+05</td>
<td><9.1E+03</td>
<td>1.4E+04</td>
<td>2.0E+04</td>
<td>2.0E+04</td>
<td>5.8E+04</td>
</tr>
<tr>
<td>Np-239</td>
<td><1.3E+05</td>
<td><1.2E+04</td>
<td>2.0E+04</td>
<td>2.0E+04</td>
<td>2.0E+04</td>
<td>5.8E+04</td>
</tr>
<tr>
<td>Ra-226</td>
<td><1.3E+05</td>
<td><7.0E+05</td>
<td>1.4E+07</td>
<td>1.9E+07</td>
<td>1.9E+07</td>
<td>5.8E+07</td>
</tr>
<tr>
<td>Ra-228</td>
<td><1.1E+05</td>
<td><9.2E+03</td>
<td>1.7E+04</td>
<td>2.1E+04</td>
<td>2.1E+04</td>
<td>5.8E+04</td>
</tr>
<tr>
<td>Ra-226</td>
<td><1.1E+05</td>
<td><9.7E+04</td>
<td>1.7E+05</td>
<td>2.2E+05</td>
<td>2.2E+05</td>
<td>5.8E+05</td>
</tr>
<tr>
<td>Activation products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag-110m</td>
<td>3.50E+06</td>
<td><1.4E+04</td>
<td>>250</td>
<td>2.5E+04</td>
<td>>140</td>
<td>3.1E+04</td>
</tr>
<tr>
<td>Mo-99</td>
<td><4.1E+04</td>
<td><3.6E+03</td>
<td>>500</td>
<td>6.3E+03</td>
<td>>150</td>
<td>7.9E+03</td>
</tr>
<tr>
<td>Na-24</td>
<td>1.20E+05</td>
<td><8.5E+03</td>
<td>>141</td>
<td>9.7E+03</td>
<td>>124</td>
<td>1.3E+04</td>
</tr>
<tr>
<td>Nb-95</td>
<td>8.20E+05</td>
<td>1.60E+05</td>
<td>51.3</td>
<td>6.00E+05</td>
<td>13.7</td>
<td>1.00E+06</td>
</tr>
<tr>
<td>Sr-90</td>
<td>3.20E+06</td>
<td><1.4E+04</td>
<td>>229</td>
<td>2.6E+04</td>
<td>>123</td>
<td>3.6E+04</td>
</tr>
<tr>
<td>Sr-90</td>
<td>4.70E+06</td>
<td><1.1E+04</td>
<td>>427</td>
<td>1.7E+04</td>
<td>>276</td>
<td>2.6E+04</td>
</tr>
<tr>
<td>Sr-90</td>
<td><3.5E+05</td>
<td><2.1E+04</td>
<td>>100</td>
<td>4.3E+04</td>
<td>>60.0</td>
<td>6.0E+04</td>
</tr>
<tr>
<td>Tc-99m</td>
<td><4.4E+04</td>
<td><4.4E+03</td>
<td>>100</td>
<td>8.4E+03</td>
<td>>12.0</td>
<td>1.2E+04</td>
</tr>
<tr>
<td>Ta-225m</td>
<td>5.10E+05</td>
<td><4.3E+03</td>
<td>>119</td>
<td>7.7E+03</td>
<td>>66.2</td>
<td>9.6E+03</td>
</tr>
<tr>
<td>Ta-225m</td>
<td>1.3E+07</td>
<td><1.3E+06</td>
<td>>18.6</td>
<td>1.8E+06</td>
<td>>25.6</td>
<td>2.5E+06</td>
</tr>
<tr>
<td>W-187</td>
<td><3.9E+05</td>
<td><3.8E+04</td>
<td>>27.4</td>
<td>6.7E+04</td>
<td>>8.9E+04</td>
<td>>9.6E+04</td>
</tr>
<tr>
<td>Zn-65</td>
<td>2.60E+06</td>
<td><9.5E+03</td>
<td>>20.0</td>
<td>2.0E+04</td>
<td>>13</td>
<td>2.7E+04</td>
</tr>
<tr>
<td>Zn-65</td>
<td><3.7E+06</td>
<td><3.1E+03</td>
<td>>7.4E+03</td>
<td>>0.9E+04</td>
<td>>9.6E+04</td>
<td></td>
</tr>
<tr>
<td>Zr-95</td>
<td>6.30E+06</td>
<td>1.10E+05</td>
<td>57.3</td>
<td>4.50E+05</td>
<td>14</td>
<td>7.80E+05</td>
</tr>
<tr>
<td>Zr-97</td>
<td>2.50E+05</td>
<td><1.0E+03</td>
<td>>250</td>
<td>2.1E+04</td>
<td>>11.0</td>
<td>3.0E+04</td>
</tr>
<tr>
<td>Corrosion products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>7.50E+07</td>
<td>1.10E+05</td>
<td>683</td>
<td>4.80E+05</td>
<td>156</td>
<td>1.20E+06</td>
</tr>
<tr>
<td>Cs-137</td>
<td>4.30E+07</td>
<td>3.50E+05</td>
<td>123</td>
<td>1.80E+06</td>
<td>24</td>
<td>3.40E+06</td>
</tr>
<tr>
<td>Cs-137</td>
<td>3.30E+07</td>
<td>2.60E+05</td>
<td>13</td>
<td>1.90E+06</td>
<td>2</td>
<td>3.30E+06</td>
</tr>
<tr>
<td>Fe-59</td>
<td><4.9E+04</td>
<td><6.7E+03</td>
<td>3.30E+04</td>
<td>4.10E+04</td>
<td>4.10E+04</td>
<td>4.10E+04</td>
</tr>
<tr>
<td>Mn-54</td>
<td>1.20E+06</td>
<td>8.10E+03</td>
<td>148</td>
<td>5.10E+04</td>
<td>24</td>
<td>1.10E+05</td>
</tr>
<tr>
<td>Mn-54</td>
<td><1.3E+05</td>
<td><1.5E+04</td>
<td>>5.5E+04</td>
<td>1.4E+05</td>
<td>1.4E+05</td>
<td>1.4E+05</td>
</tr>
</tbody>
</table>

Numerous different radioactive nuclides, including fission products, are shown to be efficiently captured and retained.
Applying Lewatit® in cooling circuits

LANXESS offers strongly acidic and basic ion exchange resins with the grade identifier KR (refer to section 5.2 for details). They are monodisperse, highly regenerated, and purified to meet specifications and requirements of the nuclear power industry.

Lewatit® KR resins are noted for their outstanding mechanical, chemical, and osmotic stabilities. Because of their excellent hydrodynamic properties, they allow for particularly high flow rates. Their high level of monodispersity and very low content of fines, i.e., max. 0.1 vol. % for particles smaller than 0.315 mm, result in especially low pressure losses compared to standard resins. When used in radioactively contaminated water circuits, they offer a number of special features, as shown below.

Resins such as Lewatit® MonoPlus S 200 KR (SAC, strongly acidic cationic), MonoPlus M 800 KR, or MonoPlus M 800 KR (SBA, strongly basic anionic), are particularly effective combinations, e.g., a previous conditioning with Levoxin®.

- Decontamination of circuits in nuclear power plants
- Removal of radioactive cations, the MonoPlus S 200 KR, for example, is very selective when capturing 137Cs and also removes an excess of 7Li.
- Treatment of primary coolants, e.g., in PWRs
- Purification of steam generator blowdown irrespective of a previous conditioning with Levoxin® (hydrazine hydrate), ethanolamine, or morpholine

If hydrazine, hydroxylamine, morpholine, ethanolamine, or ammonia is applied to prevent corrosion, the feed water – and later on the condensate – will always contain several ppm of ammonia. If ammonia comes in contact with the cationic exchange resins of the condensate polishing unit, they will hold it back, and the majority of absorbed cations will be ammonia. As a consequence, regeneration cycles shorten. This can be avoided to a certain degree if the level of exhaustion is not determined by the leakage of conductivity but if it is, in contrast, coupled to the leakage of sodium. However, if a leakage of sodium is finally measured, there is the threat of a chloride leakage on the anionic side. Regeneration has to be performed immediately in this case. Anion polishers should always be used in their OH grades, otherwise the output of chloride will quickly reach a critical level.

A few ion exchange resins are doped with 7Li since this isotope has a very small neutron cross-section of approx. 45 millibarns. A controlled release of 7Li enables the operators to steer the flux of neutrons within the aqueous phase and, therefore, to either accelerate or slow down the nuclear chain reaction. 7Li hydroxide is used for alkalizing the coolant in pressurized water reactors.

Cleaning up spent fuel pool process water

Spent fuel pools are used for storing spent fuel rods from nuclear reactors. A water column of approx. 2.4 m height is already sufficient to keep the level of radiation below critical levels. The large extra depth provides a safety buffer. This enables operators to work with the assemblies without protective shielding.

Every year, about a quarter of the whole fuel load of a reactor is removed from the core and replaced with fresh fuel. Spent fuel rods generate a substantial amount of heat and dangerous radiation that must be thoroughly controlled. The fuel bundles freshly removed from the reactor core are usually segregated for several months for initial cooling before being put in the pool.

Ion exchange resins help to remove any ionic particles. It is very important to closely monitor radiolysis occurring in the pool, which may not only cause a generation of hydrogen, but also of hydrogen peroxide.

From time to time, the ion exchange resins employed either require regeneration or have to be disposed of if designed for single use. In both cases, either the aqueous phase or the resin itself has to be stored in steel cylinders after their vitrification. The external surface of the cylinders is then decontaminated; finally, the steel cylinders are stored on site or in underground repositories.
The project:

In May 2010, the condensate polishing system in the Wilhelmshaven power station was equipped with new gel-type ion exchange resins in a mixed bed setup to enhance operation capacity and improve overall operational parameters.

The water-steam cycle is equipped with two ion exchange units with a capacity of up to 250 m3/h each for condensate polishing and two units of 25 m3/h capacity for demineralization. In the course of the project, the plant’s old condensate polishing mixed bed consisting of macroporous cation and anion exchange resins was replaced. It had many drawbacks, such as bad separation, cross-contamination, leakage of sodium, ions and, as a consequence, poorly utilized capacities in combination with relatively high regeneration chemicals consumption levels.

Newly introduced during normal operation of the power station were gel-type resins, namely Lewatit® MonoPlus S 200 KR and Lewatit® MonoPlus M 800 OH resins.

Results:

Thanks to the outstanding separation capabilities of these gel-type resins, a drastically reduced tendency to cross-contamination and ionic leaching has been observed. As a result, the operators have been able to enhance the polishing capacity by at least 50%. Therefore, less frequent regeneration and fewer regeneration chemicals are needed with the new resins. At the same time, the content of fines could be reduced, leading to decreased pressure loss and thus a lower consumption of electrical energy.

“I would like to recommend the products and expertise of manufacturers of ion exchange resins such as LANXESS in the field of condensate polishing to other operators of fossil fuel power stations. I am impressed by the improvements we have been able to realize.”

Ingo Mai, Laboratory Manager Provision and Discharge Chemistry, Uniper SE, is pleased with LANXESS’ project management and the installed solution.

Products involved:

- Lewatit® MonoPlus S 200 KR (strong acidic, SAC)
- Lewatit® MonoPlus M 800 OH (strong basic, SBA)
CASE STUDY 02
EFFECTIVE CONDENSATE POLISHING AND TOC REDUCTION AT GKM AG (GROSSKRAFTWERK MANNHEIM AG)

The power plant
The GKM AG (Grosskraftwerk Mannheim AG, “large-scale power station”) has been providing electrical power generated from steam since 1923. Its current nameplate output is 1,675 MW, including 190 MW for providing power for the railway.

The project:
For years, GKM has operated its condensate treatment units by using cation and anion exchange resins in the form of single filter systems. In the past, they have been challenged when trying to enhance electrical conductivity in the steam during the ramp-up phase after replacement of the ion exchange resin. Their challenges arose from organic material (TOC, total organic carbon) released by the standard strongly basic anion exchange resin (SBA) in its chloride form. This quantity of TOC was later on degraded in the hot steam upon which the conductivity increased.

Results:
By introducing the gel-type, highly regenerated Lewatit® MonoPlus M 800 OH resin into the plant’s single bed anion exchange filter in December 2009 during operation, the generation of TOC could be prevented almost completely. As a result, the electrical conductivity in the condensate circuit has been significantly reduced (see Fig. 7).

Fig. 7

Conductivity (µS/cm)

Conductivity after SBA (µS/cm)
Conductivity fresh steam K18 (µS/cm)
Conductivity after SAC 2 (µS/cm)
Conductivity make-up water M 800 (µS/cm)
The project:

The mixed bed filter of the spent fuel pool make-up system had a shorter lifetime than comparable filters due to candle filters being blocked downstream by degradation products of the exchange resins. The make-up system, as a consequence, had to be turned off quite frequently for short time periods, and the resin had to be exchanged. It was assumed that the reason for this was the chemical effect of hydrogen peroxide having been generated by radiolysis in the spent fuel pool.

Results:

KR resins with a high share of cross-links were introduced in spring of 2010. Due to the more robust backbone structure of the resin molecules, the beads are stabilized to efficiently prevent a possible degradation effectuated by hydrogen peroxide. Moreover, KR resins have high capacities to effectively bind even traces of cations and anions in the corresponding aqueous system.

So Lewatit® nuclear grade resins were more resistant to oxidative degradation, resulting in better stability leading to a reduction of degradative particles that had clogged the downstream candle filters.

“On the whole, the operation lifetime of the mixed bed filter is no longer governed by the blocking of filters but only by the ion capacity of the resin. This is also highly beneficial for minimizing radioactive waste.”

Dr. Timo Stoll, Head of Chemistry, NPP Emsland, 4981 Lingen/Germany

Products involved:

- Lewatit® MonoPlus S 200 KR (strong cationic, SAC)
- Lewatit® MonoPlus M 800 OH (strong basic, SBA)
The power plant

In 2012, Sorfert Algérie built a new fertilizer plant in Arzew (Algeria), close to Oran and 350 km southwest of Algiers. The US $2 billion investment consists of an industrial complex with two ammonia plants, each with a total production capacity of 2,200 tons/day, and a urea plant with a production capacity of 3,450 tons/day.

The plant has a water-steam circuit. A reverse osmosis (RO) plant is fed with seawater, and the resulting permeate is led into a cation and anion exchange unit. Finally, the condensate is treated in a condensate polishing mixed bed.

The project:

The electric conductivity of the permeate is higher than 500 μS/cm, and the permeate contains approx. 0.6 meq/l of calcium, 1 meq/l of magnesium, 5 meq/l of sodium, and low concentrations of potassium and ammonium ions leading to a total cationic concentration of 7 meq/l. The chloride concentration of the permeate amounts to approx. 6.5 meq/l, other anions occur in only minor amounts. In addition to water from RO, condensates from the process are also treated in cation and anion exchange. Waters with low concentration of minerals (e.g., condensate from the turbines or the product of thermal desalination) are treated in the mixed bed units.

Results:

Both the demineralization and the mixed bed units of this fertilizer plant have been equipped with Lewatit® ion exchange resins. These are working very reliably in removing cations and anions from the permeate (feed water) and the condensate.

By installing Lewatit® MonoPlus S 200 KR and Lewatit® MonoPlus M 800 both in the demineralization unit and in the mixed bed unit, a very effective removal of ions was achieved.

CASE STUDY 04

EFFICIENT REMOVAL OF IONS FROM REVERSE OSMOSIS PERMEATE AT SORFERT ALGÉRIE NITROGEN FERTILIZER COMPLEX ARZEW, ALGERIA

“...The fertilizer plant including off-sites and utility systems needs up to 1,200 m³/h of polished water. This alone is a remarkable requirement, which can only be satisfied by a sophisticated combination of reverse osmosis and ion exchange resins as LANXESS provides it.”

Lothar Grum, Senior Package Unit Engineer at ThyssenKrupp Uhde GmbH

Products involved:

- **Lewatit® MonoPlus S 200 KR** (strong cationic, SAC)
- **Lewatit® MonoPlus M 800** (strong basic, SBA)
The project:

A new plant of the Počerady complex has been equipped with mixed beds based on macroporous Lewatit® Mono-Plus resins. The operators attached high value to mechanical and osmotic stability since the mixed beds are regenerated externally.

The plant’s condensate polishing system is characterized by a throughput of $2 \times 250 \text{ m}^3/\text{h}$ with a projected extension to $2 \times 320 \text{ m}^3/\text{h}$. The typical temperature of the water is 40°C. The central quality requirement for the treated condensate is a conductivity of less than or equal to 0.3 μS/cm.

Results:

The practical experience with macroporous Lewatit® resins is very good.

In the case of the cation exchange resin, the end of the cycle is governed by the maximum allowed conductivity being reached. Its length is between 150,000 and 400,000 m3, depending on the quality of the condensate.

For the mixed bed system, the criterion for the length of a cycle had previously been the breakthrough of silica before this project started. These cycles were very long, usually more than half a year passed between two regenerations. Nowadays, the regeneration frequency is mainly determined by conductivity data. As a result, the operators usually decide to regenerate every two months, even when the water quality is still within the limits.

The power plant

The Czech power stations owned by the large supplier CEZ have been extensively adapted to an ecologically friendly production as of the mid-1990s. In all, 28 desulfurization units and seven fluid vessels have been installed, and the handling systems have been improved. Emissions of sulfur dioxide and ash could be reduced by 90%, and those of nitrogen oxides by 50%. Overall, 6,462 MW of electrical output capacity have been desulfurized by gas scrubbing or wet calcium hydroxide wash in that way.

The five 200 MW blocks of Počerady power station were equipped with a wet calcium hydroxide washing system between 1994 and 1996. At present, new gas and steam turbine power generation units are either under construction or have recently come onstream, with an additional output of 840 MW.

Products involved:

- Lewatit® MonoPlus SP 112 (strong cationic, SAC)
- Lewatit® MonoPlus MP 800 (strong basic, SBA)
Different grades of Lewatit® are tailored to meet all sorts of customer requirements:

Usually, standard grades of our Lewatit® resins meet most requirements, even in critical conditions of operation.

MB grades are specially manufactured for their application in mixed beds. Depending on the frequency of regeneration and the required quality of the demineralized water, the lower cross-linked version of the MB resins could be the better option. They have high regeneration efficiency and, at the same time, rinse water consumption is low. In addition, they are monodisperse, combined with a low content of fines, and the pressure losses are lower than for standard grades. If they are used in water circuits containing radioactive materials, they safeguard a water quality fully meeting the requirements of the nuclear power industry.

LANXESS offers some strongly basic, monodisperse anion exchange resins in highly regenerated forms (min. 95% of OH) which are designed for all polishing applications. Both gel-type and macroporous resins are available in their OH forms. These OH grades are especially useful for polishing processes conducted in the Lewatit® Multistep System or in conventional mixed bed arrangements, and they are preferably used in combination with the corresponding H grades, e.g., Lewatit® MonoPlus SP 112 H or Lewatit® MonoPlus S 108 H.

KR grades, e.g., Lewatit® MonoPlus M 500 KR, are specially purified and highly regenerated and have, as a rule, a share of at least 95% of OH groups. KR resins are very stable to mechanical, chemical, and osmotic impacts. Due to their excellent hydrodynamic behavior, they allow high flow rates. In addition, they are monodisperse, combined with a low content of fines, and the pressure losses are lower than for standard grades. If they are used in water circuits containing radioactive materials, they safeguard a water quality fully meeting the requirements of the nuclear power industry.

The resins have to thoroughly remove all traces of hardness constituents and other ionic impurities occurring in the condensate. Lewatit® resins, both strongly acidic and basic ones, have been successfully in use for many years for this purpose.

<table>
<thead>
<tr>
<th>Product</th>
<th>Product matrix</th>
<th>Total capacity (eq/l)</th>
<th>Bead size (mm): monodisperseness (MD, mean val)</th>
<th>Uniformity coefficient max.</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewatit® MonoPlus S 108 H</td>
<td>Styrene/DVB, gel</td>
<td>2.0</td>
<td>MD: 0.65 (+/- 0.05)</td>
<td>1.1</td>
<td>Demineralization Make-up water Mixed bed component</td>
</tr>
<tr>
<td>Lewatit® MonoPlus SP 112</td>
<td>Styrene/DVB, macroporous</td>
<td>1.7</td>
<td>MD: 0.65 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Demineralization Make-up water</td>
</tr>
<tr>
<td>Lewatit® MonoPlus SP 112 H</td>
<td>Styrene/DVB, macroporous</td>
<td>1.6</td>
<td>MD: 0.67 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Demineralization Make-up water Mixed bed component</td>
</tr>
<tr>
<td>Lewatit® MonoPlus S 200 H</td>
<td>Styrene/DVB, gel</td>
<td>2.1</td>
<td>MD: 0.60 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Demineralization Make-up water Mixed bed component</td>
</tr>
<tr>
<td>Lewatit® MonoPlus S 215 H</td>
<td>Styrene/DVB, gel</td>
<td>2.4</td>
<td>MD: 0.60 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Demineralization Make-up water</td>
</tr>
<tr>
<td>SBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewatit® MonoPlus M 500 OH</td>
<td>Styrene/DVB, gel</td>
<td>1.1</td>
<td>MD: 0.64 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Mixed bed component</td>
</tr>
<tr>
<td>Lewatit® MonoPlus M 800</td>
<td>Styrene/DVB, gel</td>
<td>1.4</td>
<td>MD: 0.59 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Mixed bed component</td>
</tr>
<tr>
<td>Lewatit® MonoPlus M 800 OH</td>
<td>Styrene/DVB, gel</td>
<td>1.2</td>
<td>MD: 0.64 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Mixed bed component</td>
</tr>
<tr>
<td>Lewatit® MonoPlus MP 800</td>
<td>Styrene/DVB, macroporous</td>
<td>1.0</td>
<td>MD: 0.62 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Demineralization Make-up water Mixed bed component</td>
</tr>
<tr>
<td>Lewatit® MonoPlus MP 800 OH</td>
<td>Styrene/DVB, macroporous</td>
<td>0.8</td>
<td>MD: 0.65 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing Mixed bed component</td>
</tr>
</tbody>
</table>
5.2 TREATMENT OF RADIOACTIVELY CONTAMINATED WATER

Ion exchange resins for treatment of radioactively contaminated water

<table>
<thead>
<tr>
<th>Product</th>
<th>Product matrix</th>
<th>Total capacity (eq/l) min.</th>
<th>Bead size (mm): monodisperse (MD, mean val.)</th>
<th>Uniformity coefficient max.</th>
<th>Main applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewatit® MonoPlus S 108 KR</td>
<td>Styrene/DVB, gel</td>
<td>2.0</td>
<td>MD: 0.65 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing</td>
</tr>
<tr>
<td>Lewatit® MonoPlus SP 112 KR</td>
<td>Styrene/DVB, macroporous</td>
<td>1.6</td>
<td>MD: 0.67 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing</td>
</tr>
<tr>
<td>Lewatit® MonoPlus S 200 KR</td>
<td>Styrene/DVB, gel</td>
<td>2.1</td>
<td>MD: 0.60 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing</td>
</tr>
<tr>
<td>Lewatit® MonoPlus S 200 KR Li</td>
<td>Styrene/DVB, gel</td>
<td>2.1</td>
<td>MD: 0.60 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing primary loop</td>
</tr>
<tr>
<td>Lewatit® MonoPlus S 215KR</td>
<td>Styrene/DVB, gel</td>
<td>2.4</td>
<td>MD: 0.60 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing primary loop</td>
</tr>
</tbody>
</table>

Anion exchange resins

<table>
<thead>
<tr>
<th>Product</th>
<th>Product matrix</th>
<th>Total capacity (eq/l) min.</th>
<th>Bead size (mm): monodisperse (MD, mean val.)</th>
<th>Uniformity coefficient max.</th>
<th>Main applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewatit® MonoPlus M 500 KR</td>
<td>Styrene/DVB, gel</td>
<td>1.1</td>
<td>MD: 0.64 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing</td>
</tr>
<tr>
<td>Lewatit® MonoPlus M 800 KR</td>
<td>Styrene/DVB, gel</td>
<td>1.2</td>
<td>MD: 0.64 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing</td>
</tr>
<tr>
<td>Lewatit® MonoPlus M 800 KIR</td>
<td>Styrene/DVB, gel</td>
<td>1.2</td>
<td>MD: 0.64 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing</td>
</tr>
<tr>
<td>Lewatit® MonoPlus MP 800 KR</td>
<td>Styrene/DVB, gel</td>
<td>0.8</td>
<td>MD: 0.65 (+/- 0.05)</td>
<td>1.1</td>
<td>Condensate polishing</td>
</tr>
</tbody>
</table>

Mixed bed systems

<table>
<thead>
<tr>
<th>Product</th>
<th>Product matrix</th>
<th>Total capacity (eq/l) min.</th>
<th>Bead size (mm): monodisperse (MD, mean val.)</th>
<th>Uniformity coefficient max.</th>
<th>Main applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewatit® MonoPlus SM 1000 KR</td>
<td>Styrene/DVB, gel</td>
<td>2.1 C/1.2 A</td>
<td>MD: 0.60 +/- 0.05 C 0.64 +/- 0.05 A</td>
<td>1.1 C/1.1 A</td>
<td>Condensate polishing/ spent fuel treatment</td>
</tr>
<tr>
<td>Lewatit® MonoPlus SM 1015 KR</td>
<td>Styrene/DVB, gel</td>
<td>2.4 C/1.2 A</td>
<td>MD: 0.60 +/- 0.05 C 0.64 +/- 0.05 A</td>
<td>1.1 C/1.1 A</td>
<td>Condensate polishing, particularly suitable for amine-conditioned systems</td>
</tr>
<tr>
<td>Lewatit® MonoPlus SM 1000 KR Li</td>
<td>Styrene/DVB, gel</td>
<td>2.1 C/1.2 A</td>
<td>MD: 0.60 +/- 0.05 C 0.64 +/- 0.05 A</td>
<td>1.1 C/1.1 A</td>
<td>Condensate polishing primary loop</td>
</tr>
<tr>
<td>Lewatit® MonoPlus SMP 1000 KR</td>
<td>Styrene/DVB, gel</td>
<td>1.6 C/0.8 A</td>
<td>MD: 0.67 +/- 0.05 C 0.65 +/- 0.05 A</td>
<td>1.1 C/1.1 A</td>
<td>Demineralization, decontamination, and elimination of rad. waste: decontamination of circuits in nuclear reactor plants. Removal of activated cleavage or corrosion products, including mechanical filtration of suspended impurities. Treatment of wastewater in, e.g., TEU systems.</td>
</tr>
</tbody>
</table>

*fb – free base
This information and our technical advice - whether verbal, in writing or by way of trials - are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided - especially that contained in our safety data and technical information sheets - and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.

Lewatit®, Lewabrane®, LewaPlus® are registered trademarks of the LANXESS group
Order No.: LXS-LPT-001EN, Edition: 2019-04
© LANXESS Deutschland GmbH 2019 | all rights reserved