Tepex with inherent flame-retardant properties

  • Fabric structure and high fiber content prevent flames from spreading
  • Flame-retardant product variants with UL 94 V-0 classification
  • Highly suitable for use in flame-resistant high-voltage battery components and inductive charging
Cologne
LXS-IMG_Tepex_Flammschutzprüfung.jpg
LANXESS AG
The reason for the good flame-retardant properties of Tepex is the high content of flame-resistant continuous fibers and the comparatively low proportion of flammable plastic. Photo: LANXESS AG
Tepex continuous-fiber-reinforced thermoplastic composite materials from Bond-Laminates demonstrate excellent fire resistance even without flame-retardant additives due to the special structure of the semi-finished products. This is the result of comprehensive investigations and tests that the LANXESS subsidiary – partly in cooperation with external testing institutes – has carried out with a view to typical Tepex applications and installation situations. “The tests also showed that our composites are highly suitable for structural components and housing components in high-voltage batteries for electric vehicles, which, for safety reasons, need to have excellent flame-retardant properties,” says Dr. Stefan Seidel, head of Research and Development at Bond-Laminates. “The materials here present a lightweight alternative to aluminum. They enable cost-effective component solutions thanks to the cost-reducing integration of functions and simple processing in the hybrid molding method without the need for rework.”

Various standard-compliant flammability tests



The flammability tests performed included US test FMVSS 302 (Federal Motor Vehicle Safety Standard) for the burning characteristics of materials for car interiors. This investigates the rate of combustion. Tepex variants that are not flame-retardant already perform well in the test. They do ignite, but the flames hardly spread in the allotted test time, and the test is finished. Non-flame-retardant Tepex variants were also tested in the fire pan test in accordance with UN regulation 180, 6.2.4. The test specimen lies flat over a tub of burning fuel and is exposed to the fire directly for 70 seconds and less directly for 60 seconds. This test is a particularly realistic reflection of the fire situations Tepex might face in typical applications such as underbody paneling components. As Seidel says, “There are no holes in the composites, nor do the fibers burn in either test. The plastic does not exhibit any dripping-burning either, and the test specimen goes out by itself.” The reason for these flame-retardant properties is the high content of flame-resistant continuous fibers and the comparatively low proportion of flammable plastic.

UL V-0 testing for Tepex suitable to a limited extent



The investigations also showed that the UL 94 test from US testing institute Underwriters Laboratories Inc. does not provide any reliable results for the actual fire behavior of Tepex. The reason is that the vertically fastened test specimen is exposed to a flame from the edge. “This approach does not match typical Tepex installation situations. Our composite material is normally used overmolded and back-injected, which impedes the flame’s access to the fiber ends,” says Seidel. For applications in which V-0 classification is compulsory, Bond-Laminates offers halogen-free, flame-retardant Tepex based on polyamide, polycarbonate and polyphenylene sulfide. For example, the polycarbonate product type is listed on the UL Yellow Card as V-0 for test specimen thicknesses of between 0.4 millimeters and 2.2 millimeters.

Comprehensive tests on the HiAnt carrier



Due to the major potential applications of Tepex in powertrains of electric vehicles, Bond-Laminates has used its own test setup to comprehensively investigate the fire behavior of overmolded, polyamide-6-based Tepex. A “HiAnt carrier” was used. This is a U-shaped profile made of Tepex, the inside of which is reinforced with crosswise ribs made of various polyamide 6 types such as Durethan, with or without a flame-retardant package. This practical test specimen is exposed to a 900 °C flame in six positions for between 30 seconds and five minutes – for instance, on the polyamide ribs or on areas that have not been overmolded. Non-flame-retardant Tepex again confirmed its inherently excellent fire resistance in this test. This is because only the molded rib material is burning after five minutes of flame treatment – and only when it is not equipped with special flame retardants. By contrast, if the ribs and overmolded areas made from a flame-retardant polyamide pass the test, the flames do not spread from the site of the fire treatment, but rather die when the burner is removed. “So, using non-flame-retardant Tepex with a flame-retardant injection molding material offers a very substantial safety margin for the design of flame-retardant components. We see enormous potential for this material combination to be applied in high-voltage battery components such as housings and partitions, but also in floor plates for inductive battery charging systems,” says Seidel.

Interested visitors can explore the broad application potential of Tepex at the JEC World in Paris-Nord Villepinte (Exhibition Center, hall 5, stand N33) from 12th to 14th of May.

MORE ABOUT THIS TOPIC

PRESS RELEASE
LANXESS_Headquarters.jpg

LANXESS completes sale of its organic leather chemicals business

June 01, 2021
PRESS RELEASE
LANXESS Annual Stockholders' Meeting 2018 in Cologne

LANXESS increases dividend also in times of the Coronavirus pandemic

May 19, 2021
PRESS RELEASE
leaf_009164_Titel_A3.jpg

LANXESS raises guidance for fiscal year 2021

May 12, 2021
PRESS RELEASE
Color optimization in the application technology laboratory at LANXESS’s site in Krefeld-Uerdingen. The lattice-like precast concrete element made from ultra-high-performance concrete (UHPC) is colored yellow using Bayferrox pigments. Tests prove that the strength of the meshed concrete structure is unaffected by the pigmentation.

Reliable coloration of ultra-high-performance concretes thanks to Bayferrox pigments from LANXESS

April 27, 2021
PRESS RELEASE
Glass fiber production at LANXESS site Kallo, Antwerpen

New water-based dispersions for high-quality PU systems

April 16, 2021
X
Usage of Cookies
We would like to use cookies to better understand you use of this website. This enables us to improve your future experience on our website. Detailed information about the use of cookies on this website and how you can manage or withdraw your consent at any time can be found in our Privacy Statement.

OK Other Settings